PROCEDURE FOR LARGE-SCALE PREPARATIONS OF OLIGOETHYLENE GLYCOL TOLUENESULPHONATES*

Ivan STIBOR⁴, Oldřich KOCIÁN^b, Petr HOLÝ⁴ and Jiří ZÁVADA⁴

^a Institute of Organic Chemistry and Biochemistry,

Czechoslovak Academy of Sciences, 166 10 Prague 6 and

^b Research Institute of Drugs, Modrá, 811 04 Bratislava

Received December 16th, 1986

Phase transfer catalysis allows a synthesis of oligoethylene glycol di-*p*-toluenesulphonates IVa-e and V from the corresponding diols Ia-e and II, respectively, in yields $\geq 95\%$. A preferential tosylation of primary hydroxyl groups in the diols *IIIa* and *IIIb* can be also accomplished almost quantitatively under the phase-transfer conditions.

Oligoethylene glycol toluenesulphonates constitute versatile building blocks for synthesis of crown ethers, cryptands, and their open-chain analogues. Preparations on large scale are often required owing to increasing importance of the multisite ligands both in industry and research^{1,2}.

The established tosylation procedure utilizing pyridine as a condensing agent³ is a priori inconvenient for large-scale preparations. Moreover, the procedure does not work well when primary alcohols are involved, proclivity of primary toluene-sulphonates to a rapid (S_N2) decomposition⁴ with pyridine being the impending factor. Accordingly, only mediocre yields of oligoethylene glycol toluenesulphonates by this procedure have been obtained⁵. Looking for a more effectual solution of the practical problem, we examined reaction of a series of unsubstituted and alkoxymethyl-substituted oligoethylene glycols with *p*-toluenesulphonyl chloride and so-dium hydroxide under phase-transfer conditions. Successful application of phase-transfer catalysis in sulphonylation reactions has been already reported^{6,7}.

We now report that with aid of phase-transfer catalysis excellent yields of di-p-toluenesulphonates IVa - e and V from the parent diols Ia - e and II, respectively, can be obtained. At the same time we report that a highly selective synthesis of the mono-p-toluenesulphonates VIa and VIb from the ω -alkoxymethyl-substituted diols IIIa and IIIb, respectively, can be also accomplished in high yields under the phase-transfer conditions. The alkoxymethyl-substituted p-toluenesulphonates are useful for synthesis of functionalized crowns.

^{*} Part V in the series Chemistry of Multidentate Ligands; Part IV: Collect. Czech. Chem. Commun. 50, 1184 (1985).

IV a, R = Ts ; n = 0

IV b, R = Ts ; n = 1

IV c, R = Ts ; n = 2

IV d, R = Ts ; n = 3

IV e, R = Ts; n = 4

//, R = H - V, R = Ts

ROCH₂CH₂OCH₂CH₂OCH₂CH(OH)CH₂OR¹

/// a,R = H ; R¹ = benzyi
/// b,R = H ; R¹ = allyl
// a,R = Ts ; R¹ = benzyl
// b,R = Ts ; R¹ = allyl

Ia, R = H; n = 0

1b, R = H; n = 1

1c, R=H; n=2

[d, R = H, n = 3]

 $1e_{1}R = H_{1}n = 4$

For compound VII see formula V with one Ts group only, $\mathbf{R} = \mathbf{H}$ or Ts.

EXPERIMENTAL

Analytical samples were dried *in vacuo* (6.5 Pa) at ambient temperature. Melting points were determined on a Kofler block and are uncorrected. Unsubstituted oligoethylene glycols Ia-e were commercial samples (Aldrich 99%). Alkoxymethyl-substituted glycols II, IIIa, and IIIb were prepared by the known procedures^{8,9}.

Unsubstituted Oligoethylene Glycol Di-p-toluenesulphonates IVa-e

A solution of *p*-toluenesulphonyl chloride (630 g; $3 \cdot 3 \text{ mol}$) in dichloromethane (750 ml) was slowly added (30 min) under stirring and cooling (ice-bath) to a mixture of an appropriate diol Ia - e (1.5 mol), 30% aqueous sodium hydroxide (1 125 ml), dichloromethane (1 500 ml), and triethylbenzylammonium chloride (13.5 g). At ambient temperature stirring was continued until *p*-toluenesulphonyl chloride disappeared (4-6 h; monitored by thin-layer chromatography on Silufol UV 254 with CH₂Cl₂ as eluent). Thereafter the mixture was poured into water (500 ml), the organic layer was separated, washed with water (3 × 750 ml), dried (MgSO₄) and solvent was taken down on rotatory evaporator. Purity of the crude product was checked by a flash chromatography (silicagel; 20 : 1 : 1 mixture of benzene, dioxane, and ethylacetate) and it was found to be better than 95%. Yields and melting points are summarized in Table I.

4-Tert-butyloxymethyl-3,6-dioxaoctane-1,8-diol Mono- and Di-p-toluenesulphonates (VII and V)

The title compounds were prepared from diol II (23.8 g; 0.1 mol) and p-toluenesulphonyl chloride (42 g; 0.22 mol) under analogous conditions as described above for the compounds IVa-e, except for a prolonged reaction time (72 h at ambient temperature). Flash chromatography

Collection Czechoslovak Chem. Commun. [Vol. 52] [1987]

Chemistry	of	Mu	ltide	ntate	I	igan	ds
-----------	----	----	-------	-------	---	------	----

(silicagel; elution with a benzene-dioxane-ethyl acetate mixture in 20:1:1-5:1:1 gradient) of the crude product afforded 48 g (88%) of the diester V and 3.5 g (7%) of the monoester VII. Yields, elemental analyses, and spectral data are summarized in Tables II and III.

1-Alkoxymethyl-9-p-toluenesulphonyloxy-4,7-dioxanonane-2-ols (VIa, VIb)

The title compounds were prepared analogously from diols IIIa and IIIb by treatment with an equimolar amount (10% excess) of p-toluenesulphonyl chloride. After stirring for 15 min at $0-5^{\circ}$ C the mixture was worked-up as described above. According to flash chromatography

TABLE I

Tosylation of unsubstituted g	glycols: Melting points and yields
-------------------------------	------------------------------------

Product	Starting glycol	М.р., °С	Yield, %
IVa	Іа	125-126 ^a (ref. ⁴ 126-127)	93 (85 ^a)
IVb	Ib	98 ^a (ref. ⁵ 98)	95 (84ª)
IVc	Ic	78^a (ref. ⁵ 78)	95 (85ª)
IVd	Id	b	95
IVe	Ie	c	95

^a After crystallization from ethanol. ^b Oil; *cf.* ref.⁵. ^c Oil; not described in literature. For $C_{24}H_{34}$. . $O_{10}S_2$ (546.7) calculated: 52.72% C, 6.27% H; found: 52.48% C, 6.17% H. Spectral data are in Table III.

TABLE II

Tosylation of alkoxymethyl-substituted glycols: Yields and elemental analyses

		Starting glycol	Yield %	Formula (mol. weight)	Calculated/found		
Product	Product				% C	% н	
	V	11	88	C ₂₅ H ₃₆ O ₉ S ₂ (544·7)	55·13 55·40	6∙66 6∙72	
	VIa	IIIa	89	C ₂₁ H ₂₈ O ₇ S (424·5)	59∙42 59∙58	6·64 6·50	
	VIb	IIIb	92	C ₁₇ H ₂₆ O ₇ S (374·5)	54·52 54·52	7·00 6·82	
	VII	11	7 ^a	C ₁₈ H ₃₀ O ₇ S (390·5)	55·37 55·52	7·74 7·68	

^{\bullet} As a by-product in preparation of V.

Collection Czechoslovak Chem. Commun. [Vol. 52] [1987]

2060

TABLE III

Compound	¹ H NMR: δ (assignment)	Mass spectra: m/z (rel. intensity, %)
IVe	2·42 s, 6 H (CH ₃); 3·60 m, 16 H (CH ₂ O); 4·08 m, 4 H (CH ₂ OTs); 7·25, 7·40, 7·75, 7·90 4 H (AB, H arom.)	91(100); 63(61); 199(29); 158(26); 65(26); 107(16); 243(2)
V	1.52 m, 9 H (CH ₃); 2.43 s, 3 H (CH ₃ —Ar); 3.2–3.85 m, 9 H (CH ₂ —O, CH—O); 4.00–4.25 m, 4 H (CH ₂ OTs); 7.22, 7.56, 7.70, 7.84 4 H (AB, H arom.)	91(100); 65(45); 87(25); 155(13); 100(8); 172(6); 107(6); 199(3)
VIa	2.40 s, 3 H (CH ₃); $3.40-3.85$ m, 11 H (CH ₂ O, CH-O); $4.00-4.20$ m, 2 H (CH ₂ OTs); 4.53 s, 2 H (C ₆ H ₅ CH ₂ -O); 7.28 , 7.53 , 7.70 , 7.85 4 H (AB, Ts); 7.28 bs, 5 H (H arom.)	91(100); 65(23); 155(10); 105(7); 199(6); 172(2); 303(1)
VIb	2.40 s, 3 H (CH ₃); $3.40-3.80$ m, 11 H (CH ₂ O, CH-O); $3.90-4.30$ m, 4 H (CH ₂ OTs, CH ₂ -CH=); $5.00-6.20$ m, 3 H (CH ₂ =CH-); 7.25 , 7.40 , 7.70 , 7.85 4 H (AB, H arom.)	91(100); 199(96); 155(91); 65(24); 58(14); 303(10); 59(10); 57(10)
VII	1.20 m, 9 H (CH ₃); 2.42 s, 3 H (CH ₃); 3.3-3.9 m, 11 H (CH ₂ —O, CH—O); 3.95-4.3 m, 2 H (CH ₂ OTs); 7.22, 7.46, 7.68, 7.92 4 H (AB, H arom.)	57(100); 91(66); 65(23); 87(18); 155(15); 101(6); 199(5)

Spectral data of new *p*-toluenesulphonates

(silicagel; benzene-dioxane-ethyl acetate 10:1:1), purity of the crude product was better than 95%. Yields, elemental analyses, and spectral data are summarized in Tables II and III.

REFERENCES

- 1. Hiraoka M.: Crown Compounds: Their Characteristics and Applications. Kodensha Ltd., Tokyo; Elsevier, New York 1982.
- 2. Freedman H. H.: Pure Appl. Chem. 58, 857 (1986).
- 3. Tipson R. S.: J. Org. Chem. 9, 238 (1944).
- 4. Edgell W. F., Parts L.: J. Am. Chem. Soc. 77, 4899 (1955).
- 5. Dale J., Kristiansen P. O.: Acta Chem. Scand. 26, 1471 (1973).
- 6. Dehmlow E. V., Dehmlow S. S.: *Phase Transfer Catalysis*, 2nd Ed., p. 94. Verlag Chemie, Weinheim 1983.
- 7. Szeja W.: Synthesis 1979, 823.
- 8. Jungk S. J., Moore J. A., Gandour R. D.: J. Org. Chem. 48, 1116 (1983).
- 9. Czech B., Babb D. A., Bartsch R. A.: Org. Prep. Proc. Int. 15, 29 (1983).

Translated by the author (J.Z.).

Collection Czechoslovak Chem. Commun. [Vol. 52] [1987]